

The Development of a 20-year Database of Ocean Surface and Near-Surface Properties

Carol Anne Clayson
Physical Oceanography Department
Woods Hole Oceanographic Institution
508-289-3626; cclayson@whoi.edu

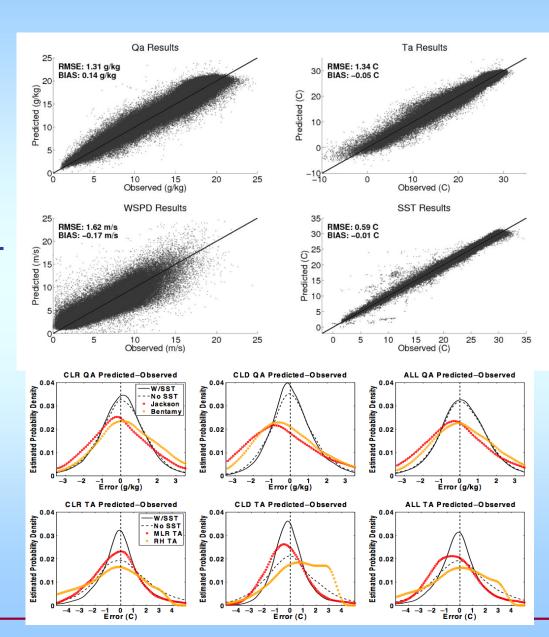
Outline

- Project Description
- Production and QA Approach
- Applications
- Schedule & Issues

- Describe at a high level what your CDR is (1-2 slides):
 - Include inputs, outputs, uncertainty estimates, temporal/spatial resolution, period of record, data format, gridding or projections, visualizations of output, collateral products, etc.
 - Fill out table (see next slide for format) and if needed, one slide of additional text

- sea surface temperature and near-surface parameters of wind speed, temperature, and humidity → determination of the air-sea turbulent heat fluxes
- Source Data
 - >AVHRR/AMSR (Reynolds +)
 - >SSM/I
 - ➤ NSCAT/QuikSCAT/SeaWinds (CCMP)
 - ➤ Supporting data: solar radiation; ice flags; aerosols

- 3 hourly, 0.25° resolution
- Current version:
 - 1998 2007
 - Uses previous version of CSU TBs
 - Binary format (matlab, IDL, C, Fortran reads available)
 - Currently producing uncertainty estimates
 - www.seaflux.org

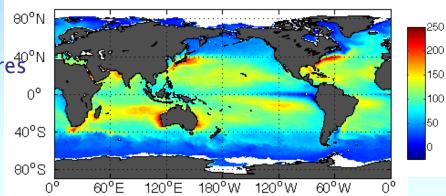


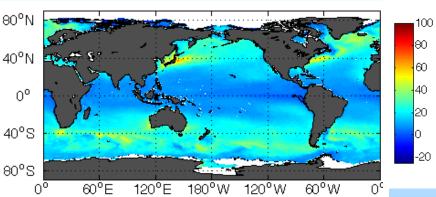
CDR(s) (Validated Outputs)	Period of Record	Spatial Resolution; Projection information	Time Step	Data format	Inputs	Uncertainty Estimates (in percent or error)	Collateral Products (unofficial and/or unvalidated)
SST	1998-2007	0.25° equal angle	3 hours	Binary	Reynolds, diurnal warming parameteriz ation, SRB, GPCP	Estimated: 0.5° C	
Near-surface air humidity, winds, & temperature	1998-2007	0.25° equal angle	3 hours	Binary	SSM/I, SSMIS, ice flags, land flags	Estimated: Ta: 0.1 °C Qa: 0.2 g/kg U: 0.2 m/s	
Latent and sensible heat fluxes	1998-2007	0.25° equal angle	3 hours	Binary	SST, Ta, Qa, Winds	Estimated: LHF: 15 W/m ² SHF: 10 W/m ²	

Approach: U, Ta, qa

- Use of neural net technique from SSM/I fields (Roberts et al. 2010)
- Gridding into equalangle grids
- Interpolation using model gradients

Approach: SST

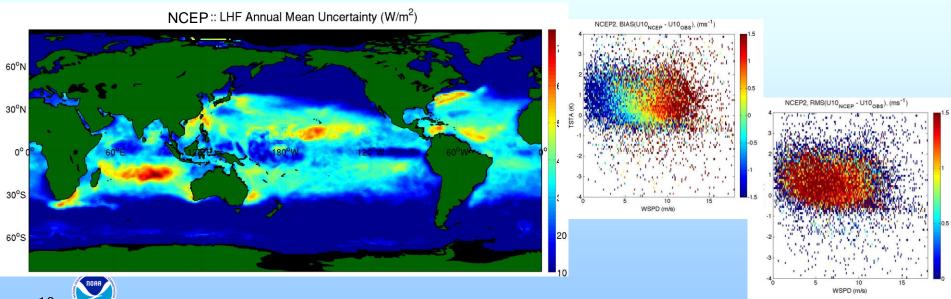

- Creation of pre-dawn SSTs
 - Version 1: Reynolds
 - Version 2: perhaps other CDR?
- Diurnal cycle inclusion
 - Estimation by paramaterization done for entire time period
 - Objective gridding of additional satellite information (AMSR, TMI, SSM/I)
- Production of final gridded SST datasets


SeaFlux Climatological Data Set Version 1.0

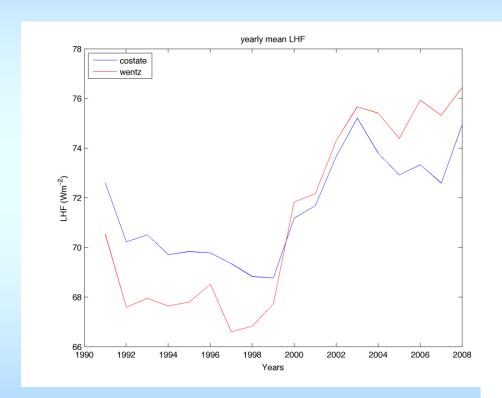
- Near-surface air temperature and humidity
 - Roberts et al. (2010) neural net technique
 - SSM/I only from CSU brightness temperatures (thus only covers 1997 2006)
 - Gap-filling methodology -- use of MERRA variability 3 hour
- Winds
 - Uses CCMP winds (cross-calibrated SSM/I, AMSR-E, TMI, QuikSCAT, SeaWinds)
 - Gap-filling methodology -- use of MERRA variability 3 hour
- SST
 - Pre-dawn based on Reynolds OISST
 - Diurnal curve from new parameterization
 - Needs peak solar, precip
- Uses neural net version of COARE 3.0
- available at http://seaflux.org

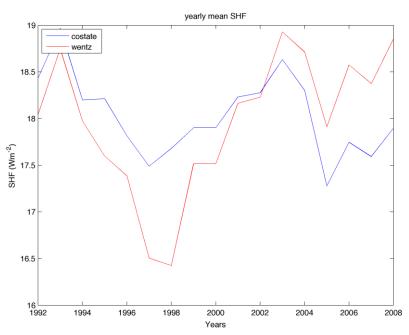
1999 Latent Heat Flux

1999 Sensible Heat Flux



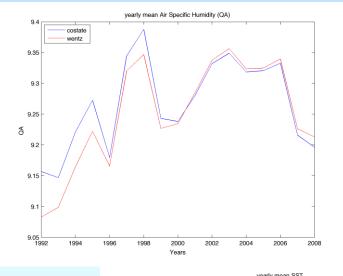
Uncertainty Approach

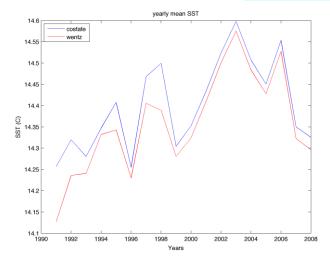

- Matchups with in situ observations -- errors
- Joint PDFs of errors (systematic error and rms error)
- Use product (ensemble average of other products) to calculate estimated values
- Apply error propagation equation to calculate systematic and random errors → on daily scale since source products at that resolution

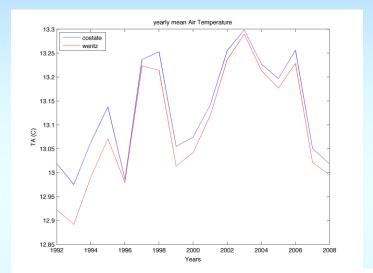


Specific Challenges/Issues to be Addressed

Which TB dataset to use?

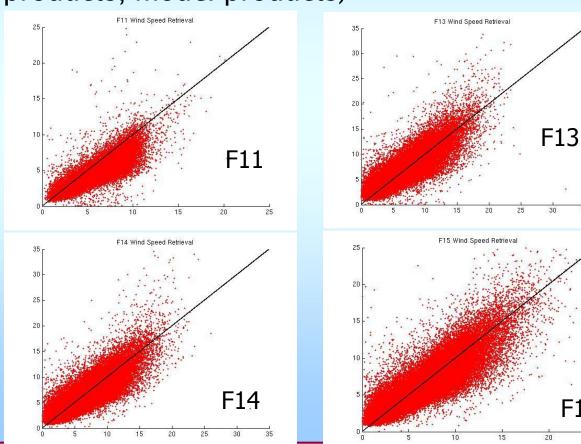






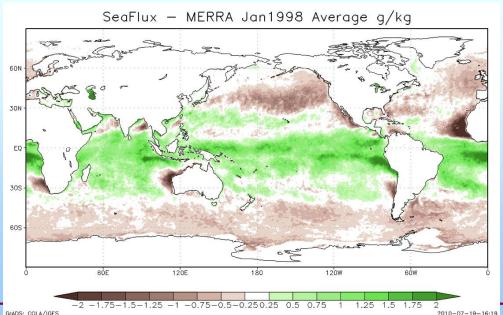
Specific Challenges/Issues to be Addressed

Which TB dataset to use?

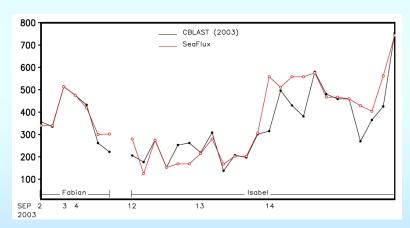

Specific Challenges/Issues to be Addressed

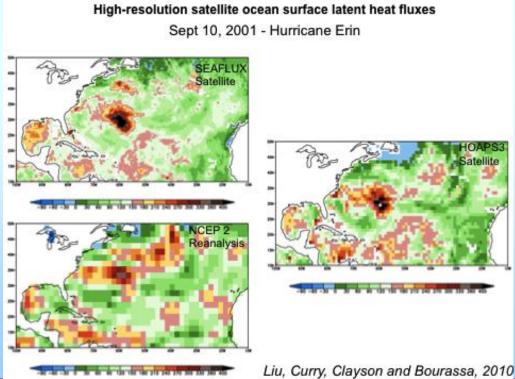
- Which TB dataset to use?
- CCMP vs our winds
- SST issues: base SST?

Quality Assurance Approach


- Statistical analysis
 - Scatter plots satellite to satellite vs in situ
 - Long term trends (other satellite products, ship-based products, model products)

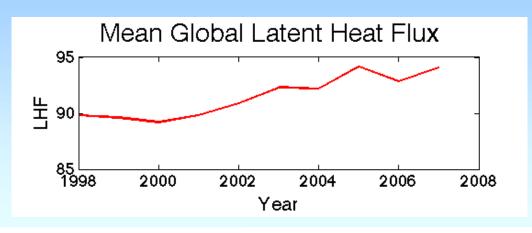
Benefit to the Science Community

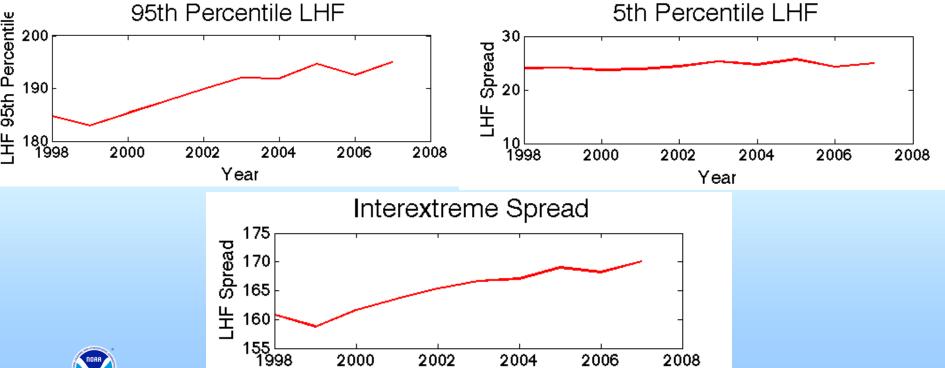

- Science user communities
 - GEWEX, SeaFlux, CLIVAR, SOLAS, NASA NEWS, GHRSST, SOLAS
 - ocean modelers, climate modelers and those analyzing output
 - energy and water cycle studies, climate analyses
- Several examples
 - An analysis of extremes, for instance hurricanes (see Lu et al. 2011)
 - Comparisons with MERRA (Roberts et al. 2011)
 - New global analysis of water, heat cycles (NASA NEWS, Stephens paper)
 - Understanding of distributions of near-surface properties including fluxes and how they evolve over time (we are just ramping up this work)



Benefit to Society

- High-resolution structure of the lower atmosphere including heat and water air-sea exchanges during storms
 - Hurricanes (Lu et al. 2011)
 - Mid-latitude storms (Scott et al. 2011)


Benefit to Society


Sectors

- Most obvious societal sector is Water. We fundamentally need to know if water cycle is changing, and if so how? Ocean evaporation is a large component of this. Agriculture would be affected by this also
- Energy. Improved winds, boundary layer stability information is of value to for instance off-shore wind farms. Future wave energy retrieval will be affected by quality of ocean model surface forcings. Ocean heat content component affected by surface fluxes.
- Society. Extremes, and their distributions, may be changing over time. High-quality climate data including surface parameters are needed to evaluate this possibility.

Trends/Extremes

Year

Current distribution of data

- Have not yet been advertising the data in any significant way
- > 100 users (required to register before downloading data), 1 - 2 new users per day
- Have several days in which > 10% of WHOI traffic has been downloading of SeaFlux data
- Users from:
 - Universities (US, China, India, Japan, Canada, South Africa, Czech Republic, Denmark, Ireland, Russia)
 - German Weather Service
 - Nansen Environmental and Remote Sensing Center
 - NRL
 - National Oceanography Center
 - JPL
 - 5th Grade Science Class, Canopy Oaks Elementary School, Tallahassee, FL

WELCOME TO SEAFLUX!

For over a decade, under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project has been investigating and producing a high-resolution satellite-based data set of of surface turbulent fluxes over the global oceans.

Register for the SeaFlux site and email updates here!

Available Data

- In Situ Data
- SeaFlux Global Data
- Other Global Data
- Documentation

Science

- What is SeaFlux?
- Models and Code
- ata SeaFlux Publications

Quick Links

- SeaFlux BAMS Article
- Woods Hole Oceanographic
 Institution

RECENT NEWS:

- Swath-Level Gridded Qa & Ta Now Available! Written on 2012/04/11 by Alec Bogdanoff
 Swath-level gridded data (Level 3) are now available for near-surface variables. For
 more information, please visit our Level 3 Component page.
- Monthly Averages Now Available. Written on 2012/02/21 by SeaFlux
 Monthly averages are now available for many variables. For more information, please visit our Monthly Averages page.

Schedule & Issues

- State project status and plans for next phase of the project
 - Version 1 completion
 - > Overall dataset with uncertainty analysis paper to be completed and published
 - > Uncertainty estimates to be included with dataset
 - Version 2 changes
 - > Decision between CSU/RSS brightness temperatures, SSTs, etc.
 - > New neural nets with final TB dataset
 - Change from binary to NetCDF
 - > Change from equal angle to equal area grid
 - Anticipated date for version 2: July 2013
- State any risks or concerns
 - Possible no-cost extension
 - What exactly needs to be turned over (original proposal just discussed datasets, not code)
- How can the CDR Program better assist you?
 - Support dealing with issues relating to turn over of coding

